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The effect of a cosmic time variation of the gravitational constant on the solar lumi-
nosity evolution is studied. It is demonstrated that a varying gravitational constant can
substantially affect the solar flux at the planetary orbits on geological time scales. Mean
surface temperatures well above the freezing point of water can be achieved in this way
throughout the Archean and Hadean, without invoking an increased greenhouse effect
or a lower albedo. Instead of a monotonous decline of the solar flux in look-back time,
due to a dim early Sun, we infer a flux minimum during the Early Proterozoic and Late
Archean. In this epoch, the solar flux is capable of generating mean surface tempera-
tures between 7◦C and 12◦C, as compared to the present 15◦C. The flux then steadily
increases, culminating in temperatures between 12◦C and 19◦C some 4.5 Gry ago, de-
pending on the parameters chosen for the ‘standard’ Sun. This explains the absence
of polar caps, and even warm oceans in the Archean and Hadean are possible at these
temperatures. No change of the present 33 K greenhouse effect is required. As for Mars,
we show that the solar flux at the Martian orbit before 3.8 Gyr was at least 90% of the
present-day flux, so that mean surface temperatures above the freezing point could have
been generated by CO2 greenhouse warming. The time variation of the gravitational
constant is such that the moderate dimensionless ratio h2H0/(k0cm

3
π ) stays constant

in cosmic time. There are stringent bounds on the logarithmic time derivative of the
gravitational constant from lunar laser ranging and helioseismology, which indicate that
the first-order derivative at the present epoch is too small to noticeably affect the solar
luminosity evolution within the age of the Earth. However, higher-order derivatives
have to be taken into account, as they do affect the solar flux in geologic look-back
time. We consider the impact of a varying gravitational constant on the redshift scaling
of the linear size of radio galaxies. The observed scaling exponent also enters the solar
luminosity evolution. The age of the universe has a substantial imprint on planetary
paleoclimates.
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1. INTRODUCTION

We point out evidence from planetary paleoclimates for a cosmic time vari-
ation of the gravitational constant. The ‘early faint Sun problem’ (Sagan and
Chyba, 1997) is reanalyzed, that is, the difficulty to reconcile Earth’s high surface
temperatures during the Archean and Hadean and the evidence for fluid water
on Mars prior to 3.8 Gyr with a weak solar luminosity. A varying gravitational
constant reduces planetary orbital radii and increases the luminosity of the early
Sun. The combined effect results in an increase of the solar flux at the planetary
orbits (Teller, 1948).

There are bounds from lunar laser ranging and helioseismology on the present
logarithmic time derivative k̇0/k0 of the gravitational constant, which seem at
first sight to exclude a substantial impact of a varying k on the solar luminosity
evolution (Newman and Rood, 1977). However, we carry out a systematic analysis
of this time variation, and show that it can have a pronounced effect on planetary
paleoclimates, even if the first derivative of k is negligible at the present epoch.
The reasoning is based on a simple fact. If we put the solar evolution into a
cosmological context, that is, relate it to cosmic time and the space expansion, we
have to cover a period of some 4.6 Gyr, which is currently believed to be about
one third of the age of the universe. We show that linearization over a look-back
time of that magnitude is not an option, and that the higher-order logarithmic
derivatives of k significantly brighten the young Sun.

The time variation of the gravitational constant is chosen proportional to
the Hubble parameter, k(τ ) ∝ H (τ ), so that the moderate dimensionless ratio
h2H/(kcm3

π ) ≈ 1/(4π ) stays constant in cosmic time. Orbital radii adiabatically
scale ∝ 1/H (τ ), and so do galaxy diameters. Based on this k(τ ), we calculate
the cosmic time evolution of the solar luminosity and flux, using Schwarzschild’s
(1958) scaling argument. In the case of constant k, luminosity and flux steadily
decrease in look-back time, resulting in negative surface temperatures (Sagan and
Mullen, 1972; Sagan, 1977). However, there is no evidence for glaciers or polar
caps in the Archean, before 2.5 Gyr (Kasting, 1989), and oceans may already
have existed for most part of the Hadean, prior to 3.8 Gyr ago (Wilde et al.,
2001). We show that a varying gravitational constant can alter the solar flux
quite substantially on geological time scales. The flux at the Earth’s orbit initially
decreases in look-back time, reaches a minimum in the Early Proterozoic or
Late Archean, 2–2.8 Gyr ago, and then steadily increases throughout the Archean
and Hadean. This results in mean surface temperatures at 4.5 Gyr close to or even
above the present 15◦C, assuming a constant 33 K greenhouse shift. At the Martian
orbit, a look-back/present-day flux ratio of S1/S0 > 0.9 can be maintained during
the heavy-bombardment period, before 3.8 Gyr, which is sufficient to generate
surface temperatures above the melting point of water by virtue of CO2 greenhouse
warming (Kasting, 1991).
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A time variation of the gravitational constant affects planetary orbits and stel-
lar luminosities as well as the redshift scaling of the linear and angular diameters
of galaxies (Sandage, 1988; Petrosian, 1998). We work this out for a specific class
of expansion factors, representing the crossover between power-law expansion,
∝ τα+β , in the early stage and exponential expansion, ∝ τβeαητ , in the late stage
of the cosmic evolution. We relate the scaling exponent of the linear size of radio
galaxies to the power-law index α + β. This index in turn affects the early solar
flux and the climate evolution. We also demonstrate that the age of the universe
has a pronounced impact on the time evolution of the solar flux, which shows in
the surface temperatures. We consider cosmic ages three to four times the solar
system age, 4.6 Gyr.

In Section 2, we derive the solar luminosity evolution in cosmic time. We
explain how the varying gravitational constant k(τ ) connects to the Hubble pa-
rameter H (τ ), and relate its present-day logarithmic derivative to the deceleration
parameter. We study the effect of a varying k on the redshift scaling of galaxy
diameters (linear & angular size) and relate the scaling exponent of radio galaxies
to the power-law index of the expansion factor. We discuss observational results
in this regard, which roughly point toward α + β ≈ 0.5.

In Section 3, we determine the effect of a varying k on the solar flux at
the planet’s orbit, in particular the resulting black-body equilibrium temperatures,
and calculate the flux minimum in look-back time. In Section 4, we study Earth’s
mean surface temperature at the flux minimum and at other look-back times in
the range 2–4.5 Gyr, and compare with constant k. We discuss the effect of the
cosmic age on these surface temperatures, and relate them to the power-law index
α + β of the asymptotic expansion factor mentioned above. We show that surface
temperatures well above the freezing point of water can be reached, throughout
the Archean and Hadean period, and enumerate the geological evidence for this. In
the tables, we demonstrate that the prediction of a warm but not too hot paleo-
climate on Earth and Mars by virtue of a varying gravitational constant is quite
stable, both with regard to the solar input parameters and the choice of the cosmic
expansion factor. In Section 5, we present our conclusions.

2. SOLAR LUMINOSITY EVOLUTION

The following discussion of the ‘faint young Sun paradox’ (Gilliland, 1989)
is based on a simple scaling relation (Schwarzschild, 1958). The solar luminosity
relates to the gravitational constant k and the mean molecular weight µ as

L(τ ) ∝ (k(τ )µ(τ ))λ, (2.1)

with scaling exponent λ ≈ 7.5 (Newman and Rood, 1977; Christensen-Dalsgaard,
1998). The molecular weight connects to the mean hydrogen mass fraction via
µ ≈ 4/(3 + 5X), and the time variation of X relates in turn to the solar luminosity
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as,

dX

dτ
= − L

εppM
, (2.2)

where τ denotes cosmic time. The present-day luminosity, the solar mass,
the energy set free by hydrogen burning, and the hydrogen mass fraction
are L0 ≈ 3.83 × 1033 erg/s, M ≈ 1.99 × 1033 g, εpp ≈ 6.34 × 1018 erg/g, and
X0 = 0.735, respectively (Wasserburg, 1987; Grevesse et al., 1996; Grevesse and
Sauval, 1998). Mild variations of these parameters can be accommodated in the
subsequent analysis, certainly all solar standard models qualify, cf. after (2.21).
The luminosity evolution L(τ ) is obtained by solving (2.1) and (2.2) with the
indicated input parameters. We need to know, however, the time variation of the
gravitational constant in (2.1), to be inferred from the space expansion.

To this end, we start with the ascending series of the cosmic expansion factor
in the Robertson-Walker line element (Sandage, 1988),

a(τ )

a0
= 1 + � − q0

2
�2 + p0

6
�3 + . . . , (2.3)

using the shortcut � := H0 · (τ − τ0). Subscript zeros refer to the present epoch τ0,
so that H0 = H (τ0), where H (τ ) = ȧ(τ )/a(τ ) is the Hubble parameter. The second
order in (2.3) is determined by the (deceleration) parameter q0 = −ä0a0/ȧ

2
0 , and

the third by p0 = a
(3)
0 a2

0/ȧ
3
0 . These parameters, q0 and p0, are directly measurable,

as they enter into angular diameters, surface brightness, source counts, etc.
The present-day gravitational constant is k0 ≈ 6.707 × 10−45hc5 MeV−2.

For the moderate ratio

h2H0

k0 cm3
π

≈ 1

4π
(2.4)

to stay constant in the cosmic evolution, the time variation of the gravitational
constant has to be proportional to the Hubble parameter, k(τ ) ∝ H (τ ), so that

k(τ )

k0
= H (τ )

H0
. (2.5)

The pion mass mπ is 139.567 MeV/c2. To satisfy (2.4), we choose H0 =
h0/(9.778 Gyr), with h0 ≈ 0.6802, or H−1

0 ≈ 14.375 Gyr (Tomaschitz, 1998b).
In fact, there seems to be a trend closing in on h0 ≈ 0.68 (Melchiorri et al., 2003).
It is quite remarkable that the ratio (2.4) can be related to the unit sphere, given
the very large numbers involved. However, it is not really important to do so in
the subsequent investigations; a variation of h0 within a few percent can easily be
accommodated.

Remarks: The speed of light, the Planck constant, and the pion mass do not vary
in cosmic time. There is, however, the possibility to possibility to scale these
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constants with cosmic time as an alternative to the space expansion (Tomaschitz,
1998b). That is, instead of expanding the intergalactic distances by varying the
length unit of the 3-space (as defined by the curvature radius, for instance), we
may equally well contract the measuring rods by assuming a time variation of
the fundamental constants. Certain moderate dimensionless ratios enumerated in
Tomaschitz (2000) have to stay constant, so that nuclear and electromagnetic
interactions scale at the same rate. The ratio (2.4) is reminiscent of the electric
fine structure constant, which is kept constant to avoid dispersion in redshifts,
which would otherwise show in a broadening of spectral lines (Zel’dovich, 1964;
Steigman, 1978; Tomaschitz, 1993, 1994, 1998a). Finally, one would expect a time
variation of the gravitational constant to manifest on geological time scales, given
that the age of the Earth already covers one fourth to one third of the cosmic age as
inferred from main-sequence fitting of globular clusters and nuclear chronometers
in halo giants, cf. Section 4.

We study a specific class of expansion factors,

a(τ ) = Aτβsinhα(ητ/τ0), (2.6)

describing the cross-over from an initial power-law, ∝ τα+β , to exponential expan-
sion, ∝ τβeαητ , in the final stage. The normalization A can be chosen arbitrarily,
we may fix it by the convention a0 := a(τ0) = 1 at the present epoch. The constants
α and η are positive, and α + β ≥ 0. The latter condition is required for expan-
sion, ȧ(τ ) > 0, throughout the cosmic evolution, 0 < τ < ∞. The logarithmic
derivative of (2.6) reads,

H (τ ) = ȧ(τ )

a(τ )
= αη

τ0
coth

(
η

τ

τ0

)
+ β

τ
. (2.7)

In the asymptotic regimes τ → 0,∞, this is evidently positive if α + β ≥ 0,
and it stays so for finite τ . In fact, if H (τ ) were negative for a finite τ , there would
be a minimum defined by Ḣ (τmin) = 0, so that H (τmin) < 0, and β < 0. However,
by virtue of Ḣ (τmin) = 0, we can equate coth(ητmin/τ0) in (2.7) to an algebraic
function, and easily check that H (τmin) > 0 for all extrema Ḣ (τmin) = 0, cf. (3.4).
We require α + β > 0, so that H (τ → 0) ∼ (α + β)/τ and H (τ → ∞) ∼ αη/τ0.

The parameters τ0, q0 and p0 in the ascending series (2.3) relate to the
expansion factor (2.6) as

H0τ0 = αη coth η + β, (2.8)

ε := q0 + 1 = 1 − ä0

a0

a2
0

ȧ2
0

= 1

(H0τ0)2

(
αη2

sinh2 η
+ β

)
, (2.9)

δ := p0 − 1 = a
(3)
0

a0

a3
0

ȧ3
0

−1 = 2

(H0τ0)3

(
αη3 coth η

sinh2 η
+β

)
−3ε. (2.10)
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The first and second order of the ascending series of the Hubble parameter are
determined by ε, δ and τ0,

H (τ )

H0
= 1 − ε� + 1

2
(δ + 3ε)�2 + · · · , (2.11)

where � = H0 · (τ − τ0) as in (2.3).

Remarks: We have defined the Hubble constant as well as the deceleration parame-
ter completely detached from the Einstein equations. The natural way to deal with
varying fundamental constants is to adopt an absolute cosmic space-time concep-
tion, as they break the covariance of the Lagrangians. Once general covariance
is abandoned, evolution equations based on the Riemann tensor or its general-
izations lose their motivation (Tomaschitz, 1998c). A cosmic time variation of
the fundamental constants is remote from relativity principles, as it establishes a
relation of local Lagrangians to the absolute cosmic time of the comoving galaxy
frame (Tomaschitz, 2004). Nevertheless, on local time scales and restricted to
locally geodesic neighborhoods, the cosmic time dependence of the fundamental
constants can be neglected, so that Lorentz invariance is preserved.

If ε, δ and τ0 are taken as input, the parameters α, β and η in the expansion
factor (2.6) can be recovered by inversion of (2.8)–(2.10). First, η is found by
solving

4η(η coth η − 1)

sinh(2η) − 2η
= (H0τ0)2(δ + 3ε) − 2H0τ0ε

1 − H0τ0ε
, (2.12)

Once η is determined by (2.12), we find the remaining parameters in the expansion
factor (2.6) as

α

H0τ0
= 2

sinh2 η

η

1 − H0τ0ε

sinh(2η) − 2η
, (2.13)

β

H0τ0
= −2η − H0τ0ε sinh(2η)

sinh(2η) − 2η
. (2.14)

The mentioned condition, α + β ≥ 0, to ensure expansion throughout the evolu-
tion, cf. after (2.7), is thus equivalent to

H0τ0ε ≥ η2 − sinh2 η

(η coth η − 1) sinh2 η
. (2.15)

As sinh η > η and η coth η > 1 hold true for positive η, the right-hand side is
negative and thus ε ≥ 0 is always permissible.

If the parameters τ0, q0 = −1 + ε, and p0 = 1 + δ, which define the Taylor
coefficients of the expansion factor (2.3), are the observed input, the parameters
α, β and η in (2.6) can be recovered via (2.12)–(2.14). If we take α + β =: γ as
input instead of p0, together with ε and τ0, we may replace relations (2.8) and
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(2.9) by

γ

2H0τ0

η(sinh(2η) − 2η)

sinh2 η − η2
+ H0τ0ε

sinh2 η(1 − η coth η)

sinh2 η − η2
= 1, (2.16)

α

H0τ0
= 1 − γ /(H0τ0)

η coth η − 1
,

β

H0τ0
= 1

η coth η − 1

(
γ

H0τ0
η coth η − 1

)
,

(2.17)

and solve (2.16) for η. p0 is then calculated via (2.10) or (2.12). H0 and τ0 only
enter as dimensionless product in the above identities. A first hint on the value of
γ is obtained from the linear and angular diameters of radio galaxies, from their
redshift scaling, that is.

Angular diameters are defined as the ratio θ = y(τ1)/d(τ1), where y(τ1) the
intrinsic galaxy diameter and d(τ1) the metric look-back distance. Both the linear
size of the source and the look-back distance are taken at emission time τ1. The time
evolution of galaxy diameters is the same as of planetary orbital radii, inversely
proportional to the gravitational constant, so that y(τ1) = y0H0/H (τ1), where y0

is the present-day diameter. This follows from the virial theorem and the adiabatic
time scaling of the Newtonian potential (Teller, 1948). This scaling applies to
galaxies, it may not be valid for other extended radio sources, let alone compact
sources. The look-back distance can readily be calculated from the Robertson-
Walker line element, d(τ1) = ca(τ1)

∫ τ0

τ1
a−1(τ )dτ , where present epoch τ0 and

emission time τ1 connect via 1 + z = a(τ0)/a(τ1). When considering high z in
leading-order asymptotics, it suffices to approximate the expansion factor (2.6) by
a(τ ) ∝ τ γ , γ := α + β, so that τ1 ∝ z−1/γ . The linear size scales as y ∝ z−1/γ ,
since H (τ ) ∝ 1/τ , cf. after (2.7); we use the more customary notation n = 1/γ

for this scaling exponent. If 0 < γ < 1, the above integral defining the look-back
distance converges, and is thus in leading order independent of z. In this way, we
find the high-redshift scaling of the angular diameter as θ ∝ z1−n. If γ > 1, we find
θ ∝ 1, independent of γ in leading order, and if γ = 1, the logarithmic divergence
of the integral in d(τ1) shows as θ ∝ 1/ log z. The low-z scaling can easily be
extracted from the expansion (2.3), applicable to short look-back intervals τ0 − τ1,
and we find in leading order, θ ∝ z−1.

We shortly list the observed scaling exponents of the linear size, customarily
defined by y ∝ (1 + z)−n (Petrosian, 1998; Maloney and Petrosian, 1999; Lubin
and Sandage, 2001). An exponent of n ≈ 3 ± 0.5 is quoted in Kapahi (1989)
and Singal (1993), assuming a luminosity scaling of y ∝ L0.3 at constant z, and
similarly in Oort et al. (1987), n ≈ 3.3 ± 0.5, with the same luminosity depen-
dence. The luminosity evolution is empirical, the exponent serves as a further
fitting parameter. On the other hand, no linear-size evolution with redshift was
found in Nilsson et al. (1993). In between these extreme cases, an exponent of
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n ≈ 1.5 ± 1.4 is cited in Barthel and Miley (1988) for a quasar sample extend-
ing to z ≤ 2.7, where only a very weak luminosity dependence, y ∝ L−0.03, is
needed. An exponent of n ≈ 1.7 ± 0.4 (with y ∝ L−0.06 and z ≤ 1) is inferred in
Neeser et al. (1995), where also a sample of radio galaxies with quasars discarded
is studied. In this reduced sample, n ≈ 1.96+0.43

−0.49. This is a crucial point, as the
intrinsic size evolution inversely proportional to the Hubble parameter is justified
for galaxies only, hinging on the virial theorem. No substantial linear size evolu-
tion of quasars was found in Singal (1993), which suggests that they are based
on a different interaction mechanism. Though these exponents are still somewhat
vague, they point toward a γ -range centered at γ ≈ 0.5 or n ≈ 2.

We continue the discussion of (2.5), the proportionality k(τ ) ∝ H (τ ). An
excellent estimate of the deceleration parameter q0 is obtained from bounds on
the present-day logarithmic derivative of k, such as |k̇0/k0| < 8 × 10−3 Gyr−1,
inferred from lunar laser ranging (Williams et al., 1996). The best bound so
far comes from helioseismology, 1.6 × 10−3 Gyr−1 (Guenther et al., 1998). This
suggests that q0 is very close to −1, by virtue of, cf. (2.5) and (2.11),

k̇0/k0 = −H0(1 + q0). (2.18)

The seismological bound gives |ε| < 0.023, where ε = 1 + q0, cf. (2.9). We study
an expansion factor where ε is one order below this bound, cf. (3.3), and for
the most part of this paper we even put ε ≈ 0, cf. Tables I–VI. The goal is to
demonstrate that the time variation of k has a significant impact on the solar
luminosity evolution and is quite capable of enhancing the luminosity of the early
Sun, even if k̇0/k0 ≈ 0 at the present epoch. We do not even need to be particularly
selective with regard to input parameters, solar and others, to argue a bright young
Sun and a warm paleoclimate. If k̇0/k0 is very small as suggested by the above

Table I. Parameters relating to the cosmic expansion factor, a(τ ) ∝ τβ sinhα(ητ/τ0), cf. (2.6).
q0 = −1 + ε and p0 = 1 + δ define the second and third order of the ascending series of a(τ ), cf.
(2.3). η and ε = 0 are input parameters, whereas δ, α and β are calculated via (2.12)–(2.14). The latter
have been rescaled with H0τ0 to make them independent of the present epoch τ0. The coefficients
c3,4 are calculated via (2.23) and the parameters in this table. c3 is independent of λ since ε = 0. At
λ = 7.5 (scaling exponent of the luminosity in (2.1)), the ci determine the third and fourth order of
the ascending series of K1/�1 in look-back time, cf. (2.24) and Table II. At λ = 1, they determine

the solar flux minimum, cf. (3.8)

η α/(H0τ0) −β/(H0τ0) (H0τ0)2δ c3 c
(λ=1)
4 c

(λ=7.5)
4

0.5 6.19951 5.70772 0.93580 0.49851 0.49265 1.20417
1 1.69787 1.22936 0.76967 0.48034 0.47748 0.95879
1.5 0.86139 0.42748 0.56187 0.42588 0.45539 0.71190
2 0.56479 0.17175 0.36913 0.33847 0.41169 0.52240
2.5 0.42316 0.07225 0.22165 0.24113 0.34042 0.38034
3 0.34185 0.03066 0.12354 0.15603 0.25491 0.26731
3.5 0.28888 0.01293 0.06482 0.09325 0.17425 0.17766
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Table II. Input from Table I. In addition, H0τ0 = 1.1, implying a present epoch τ0 ≈ 15.8 Gyr
Tables II–VI are compiled for a look-back time τ0 − τ1 of 3.8 Gyr, so that �1 = H0 · (τ1 − τ0) ≈
−0.264. k0 is the present-day gravitational constant, k1 its look-back value at τ1, and K1 determines
the look-back/present-day luminosity ratio, cf. (3.1) and Table III. The ratio k1/k0 is calculated via
(3.2), and K1/�1 via (2.24), with λ = 7.5 and the c

(λ=7.5)
3,4 in Table I. The present-day/look-back

ratio R0/R1 of a planetary orbital radius is identical with k1/k0, cf. after (3.5)

η k1/k0 (H0τ0 = 1.1) K1/�1 (H0τ0 = 1.1)

0.5 1.03599 1.08629
1 1.03089 1.07264
1.5 1.02404 1.05504
2 1.01710 1.03795
2.5 1.01124 1.02410
3 1.00689 1.01427
3.5 1.00401 1.00797

bounds, the first order of the Taylor expansion (2.11) of the Hubble parameter
is negligible, but the second order, ∼δ�2/2, has to be taken into account for a
look-back interval τ0 − τ1 comparable to the age of the solar system, this is the all
important point.

Returning to the luminosity evolution defined by (2.1) and (2.2), we find

1

µ

dµ

dτ
≈ 5

(3 + 5 X0)

L

εppM
, (2.19)

L̇

L
= ξ

L

εppM
+ λ

k̇

k
, ξ ≈ 12.5

1 + (5/3)X0
≈ 5.62, (2.20)

Table III. Input as in Tables I and II, in particular H0τ0 = 1.1 and τ0 − τ1 = 3.8 Gyr. The exponent
n = 1/(α + β) determines the high-redshift scaling of angular diameters, θ ∝ z1−n, subject to the
varying gravitational constant, cf. after (2.17). The other entries relate to the solar luminosity. L1/L0

is the look-back/present-day luminosity ratio, S1/S0 the corresponding flux ratio (solar flux at the
planet’s orbit), and T1/T0 (in K) is the resulting equilibrium temperature ratio (black-body, the same
for all planets, without inclusion of greenhouse effect and albedo), cf. the discussion following (3.3).
These ratios are calculated via (3.1) (with λ = 7.5) and Table II, for two choices of solar parameter,

σa ≈ 0.774 and σb ≈ 1.22, cf. after (2.21)

η α −β n − 1 L1/L0(σa) S1/S0(σa) T1/T0(σa) L1/L0(σb) S1/S0(σb) T1/T0(σb)

0.5 6.819 6.278 0.848 1.06687 1.1450 1.0344 0.96578 1.0366 1.0090
1 1.868 1.352 0.941 1.03042 1.0950 1.0230 0.93369 0.9923 0.9981
1.5 0.947 0.470 1.095 0.98311 1.0310 1.0076 0.89196 0.9354 0.9834
2 0.621 0.189 1.313 0.93689 0.9692 0.9922 0.85108 0.8804 0.9687
2.5 0.465 0.079 1.591 0.89926 0.9196 0.9793 0.81772 0.8362 0.9563
3 0.376 0.034 1.921 0.87207 0.8841 0.9697 0.79357 0.8045 0.9471
3.5 0.318 0.014 2.294 0.85446 0.8613 0.9634 0.77791 0.7842 0.9410
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Table IV. Input as in Table I; the caption of Table II applies. Here and in Tables V and VI, we
study the effect of the parameter H0τ0 on the time variation of k and the luminosity, flux and
temperature ratios, as well as on the scaling exponent of the angular diameter. In Tables II and
III, we considered H0τ0 = 1.1. Here, we study two further values, H0τ0 = 0.95, that is, a cosmic
age of τ0 ≈ 13.7 Gyr, as well as H0τ0 = 1.3, so that τ0 ≈ 18.7 Gyr. τ0 enters the listed quantities
only through the dimensionless product H0τ0. The look-back time is in both cases 3.8 Gyr or

�1 ≈ −0.264

η k1/k0 (H0τ0 = 0.95) K1/�1 (H0τ0 = 0.95) k1/k0 (H0τ0 = 1.3) K1/�1 (H0τ0 = 1.3)

0.5 1.05090 1.12117 1.02452 1.05914
1 1.04396 1.10220 1.02091 1.04967
1.5 1.03456 1.07774 1.01612 1.03747
2 1.02491 1.05393 1.01132 1.02568
2.5 1.01664 1.03450 1.00733 1.01618
3 1.01039 1.02060 1.00442 1.00950
3.5 1.00615 1.01160 1.00252 1.00526

where λ ≈ 7.5. A simple rescaling, L̃ = Lk−λ, gives dL̃/L̃2 = ξkλ(τ )dτ/(εppM),
solved by

L(τ )

L0
= (k(τ )/k0)λ

1 − σK(τ )
, K(τ ) := H0

kλ
0

∫ τ

τ0

kλ(τ )dτ , σ := L0ξ

εppMH0
. (2.21)

We use the shortcuts K1 = K(τ1) and L0,1 = L(τ0,1), where τ0 stands for the
present epoch, and τ0 − τ1 is the look-back time. The gravitational constant k(τ )
is determined by (2.5) and (2.7). The solar parameters stated after (2.2) give σ ≈
0.774. This dimensionless constant is somewhat uncertain depending on the solar
modeling (Sackmann and Boothroyd, 2003). A popular choice in paleoclimatic
studies is σ ≈ 1.22, resulting in an even dimmer early Sun (Gough, 1981; Gilliland,
1989). In the tables, we discuss both values of σ , denoted by σa,b, respectively.

The integral K(τ1) over the varying gravitational constant in (2.21) can be
calculated from the ascending series of kλ(τ ), using term-by-term integration; the
convergence is quite rapid for look-back times below the solar age. We use the

Table V. Input taken from Tables I and IV, otherwise the caption of Table III applies, but now with
H0τ0 = 0.95. The look-back interval is 3.8 Gyr. Luminosity, flux, and temperature ratios are listed

twice, for the solar parameters σa,b stated in Table III

η α −β n − 1 L1/L0(σa) S1/S0(σa) T1/T0(σa) L1/L0(σb) S1/S0(σb) T1/T0(σb)

0.5 5.890 5.422 1.140 1.18064 1.3039 1.0686 1.06614 1.1774 1.0417
1 1.613 1.168 1.247 1.12694 1.2282 1.0527 1.01900 1.1106 1.0266
1.5 0.818 0.406 1.426 1.05740 1.1318 1.0314 0.95779 1.0251 1.0062
2 0.537 0.163 1.678 0.98957 1.0395 1.0097 0.89789 0.9432 0.9855
2.5 0.402 0.069 2.000 0.93425 0.9656 0.9913 0.84889 0.8774 0.9678
3 0.325 0.029 2.383 0.89414 0.9128 0.9775 0.81328 0.8303 0.9546
3.5 0.274 0.012 2.815 0.86773 0.8784 0.9681 0.78977 0.7995 0.9456
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Table VI. As Table V, with H0τ0 = 1.3. The enumerated quantities are defined in the caption of
Table III

η α −β n − 1 L1/L0(σa) S1/S0(σa) T1/T0(σa) L1/L0(σb) S1/S0(σb) T1/T0(σb)

0.5 8.059 7.420 0.564 0.98588 1.0348 1.0086 0.89421 0.9386 0.9843
1 2.207 1.598 0.642 0.96166 1.0023 1.0006 0.87284 0.9097 0.9766
1.5 1.120 0.556 0.773 0.93022 0.9604 0.9900 0.84505 0.8725 0.9665
2 0.734 0.223 0.957 0.89953 0.9200 0.9794 0.81788 0.8365 0.9563
2.5 0.550 0.094 1.192 0.87471 0.8876 0.9706 0.79586 0.8076 0.9480
3 0.444 0.040 1.472 0.85688 0.8645 0.9642 0.78002 0.7869 0.9419
3.5 0.376 0.017 1.788 0.84542 0.8497 0.9601 0.76983 0.7737 0.9379

rescaled dimensionless look-back interval �1 := H0 · (τ1 − τ0), cf. after (2.3), as
well as the shortcuts k0,1 = k(τ0,1). �1 is defined negative; a look-back time of
τ0 − τ1 ≈ 3.8 Gyr gives �1 ≈ −0.264.

We expand kλ(τ ) up to the fourth order in � = H0 · (τ − τ0), cf. (2.5) and
(2.7),

kλ(τ )

kλ
0

= 1 − λε� + λc2�
2 − λc3�

3

(H0τ0)3
+ λc4�

4

(H0τ0)4
+ · · · , (2.22)

c2 := 1
2 (δ + 3ε + (λ − 1)ε2),

c3 := α

H0τ0

η4

sinh2 η

(
2

3
+ 1

sinh2 η

)
+ β

H0τ0
+ 1

2
(λ − 1)(H0τ0)3ε(δ + O(ε)),

c4 := α

H0τ0

η5 coth η

sinh2 η

(
1

3
+ 1

sinh2 η

)
+ β

H0τ0
+ 1

8
(λ − 1)(H0τ0)4(δ2 + O(ε)).

(2.23)

This is used in the range |�| ≤ |�1| ≤ 0.327, where the numerical bound stems
from the solar main-sequence turnoff age, 4.7 Gyr. The third and fourth order
coefficients, c3,4, have been expanded in ε, for the sake of simplicity, so that the
terms stated in (2.22) amount to a double series expansion in fourth order. In the
first and second order in �, however, there is no ε-expansion involved, and if
λ = 1, there is no ε-expansion in c3,4 either. We occasionally write c

(λ)
i , cf. (3.8)

and Tables I and VIII. K(τ ) in (2.21) is calculated via term-by-term integration
of the expansion (2.22),

K1

�1
= 1 − 1

2
λε�1 + 1

3
λc2�

2
1 − 1

4

λc3�
3
1

(H0τ0)3
+ 1

5

λc4�
4
1

(H0τ0)4
+ · · · (2.24)

When compiling the tables in Sections 3 and 4, we use this expansion of K(τ1) in
the luminosity ratio L(τ1)/L0.
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3. THE SOLAR FLUX MINIMUM IN LOOK-BACK TIME

We turn to the solar flux at a planetary orbit. The equilibrium condition
for black-body radiation is S ∝ T 4, the flux scaling with the fourth power of
temperature. The cosmic time scaling of the flux follows from S ∝ L/R2. The
proportionality factors are constant, since atomic or nuclear periods (time units)
do not scale with time, nor does the Stefan-Boltzmann constant in the T 4-law. The
orbital radius scales with the inverse gravitational constant, R ∝ k−1(τ ) (Teller,
1948). In this way, we infer the adiabatic time evolution of the equilibrium tem-
perature, T ∝ L1/4k1/2, or, cf. (2.21),

T 4
1

T 4
0

= S1

S0
= L1

L0

k2
1

k2
0

,
L1

L0
≈ (k1/k0)λ

1 − σK1
. (3.1)

Here, we use the usual shortcuts T0,1 = T (τ0,1), the solar parameter σ is defined
in (2.21), and K1 stands for the expansion (2.24) with �1 = H0 · (τ1 − τ0) and
λ ≈ 7.5. In the nominator (k1/k0)λ of the luminosity ratio, we substitute, cf. (2.5)
and (2.7),

k1

k0
= α

H0τ0
η coth

((
1 + �1

H0τ0

)
η

)
+ β

H0τ0

1

1 + �1/(H0τ0)
, (3.2)

where H0τ0 relates to the expansion factor as stated in (2.8).
The purpose of Tables I–VI is to give a quantitative overview as to how the

parameters defining the expansion factor, a(τ ) ∝ τβ sinhα(ητ/τ0), cf. (2.6), affect
the luminosity, flux and temperature evolution. H0 is regarded as observed input,
specified after (2.5), so that the present epoch τ0 follows from α, β and η, by
virtue of (2.8). If these three parameters are prescribed, the Taylor coefficients
q0 = ε − 1 and p0 = δ + 1 of the ascending series (2.3) of the expansion factor
can be found via (2.9) and (2.10), cf. Table VIII.

In Table I, however, we proceed differently. We start by prescribing an arbi-
trary value for η, and put ε = 0. The five other entries in this table are calculated
from (2.12)–(2.14) and (2.23). (We do not need to calculate the zero of (2.12) as
we take η as input.) In Tables II–VI, we specify the third input parameter, H0τ0

(apart from η and ε = 0), as well as the look-back time, 3.8 Gyr, or �1 = −0.264,
cf. before (2.22). In Tables II and III, we use H0τ0 = 1.1, and in Tables IV–VI we
calculate the same entries at H0τ0 = 0.95 and H0τ0 = 1.3. Other values of H0τ0

moderately outside this range, and any other look-back interval, |�1| < 0.327,
cf. after (2.23), are also admissible, of course. In Tables II and IV, we list k1/k0

and K1, which determine the luminosity, flux and temperature ratios according to
(3.1); k1/k0 is calculated via (3.2), and K1 via (2.24). The series expansion (2.24)
of K1 is quite efficient for look-back times up to the solar age. The indicated
third and fourth order terms, determined by the coefficients c3,4 in Tables I and
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VIII, barely affect the luminosity ratio (3.1), unless the cosmic age is very low, cf.
Section 4.

The redshift scaling of the linear sizes of radio galaxies discussed before
(2.18) suggests to try α + β ≈ 0.5, so that angular diameters scale as θ ∝ z−1, at
high as well as low redshifts. This in mind, we inspect Table I to find an expansion
factor (2.6) determined by the parameters,

α = 1, β = −1

2
, η = 3

2
, a(τ ) ∝ τ−1/2 sinh

3τ

2τ0
. (3.3)

Tables VIII–X are compiled with this expansion factor. We find H0τ0 ≈ 1.1572, cf.
(2.8), resulting in a cosmic age of τ0 ≈ 16.54 Gyr, as well as ε ≈ −2.786 × 10−3,
cf. (2.9). The latter determines the present-day logarithmic derivative, k̇0/k0 ≈
1.938 × 10−4 Gyr−1, according to (2.18). These numbers are based on (3.3). k̇0/k0

is positive, which indicates that k̇ underwent a sign change within the solar system
age, as k must have been larger in the past for the planetary orbital radii to be
smaller. We want to determine the time τk at which this sign change occurred,
the zero of k̇, that is. According to (2.5), τk solves Ḣ (τk) = 0, where the time
derivative of the Hubble parameter (2.7) reads,

Ḣ (τ ) = −αη2

τ 2
0

1

sinh2(ητ/τ0)
− β

τ 2
. (3.4)

This amounts to solve,

τk

τ0
=

√−β/α

η
sinh

(
η
τk

τ0

)
, (3.5)

where β < 0, α + β > 0, and η > 0, cf. after (2.7). Since Ḣ (τ → 0) ∼ −(α +
β)/τ 2, and Ḣ (τ → ∞) ∼ −β/τ 2, there is always a unique solution τk . If we
specify the parameters as in (3.3), we find τk/τ0 ≈ 0.9943, so that the sign change
of k̇0/k0 happened 0.095 Gyr ago.

In Table IX, we list the ratio k1/k0, cf. (3.2), for various look-back times,
see also Tables II and IV. As the orbits scale inversely proportional to k, we can
identify k1/k0 with the radial present-day/look-back ratio R0/R1. This scaling
applies to elliptical orbits, without a change in eccentricity. The look-back radius
R1 at 4.5 Gyr is 3% smaller than the present one. However, since we are past the
zero of k̇, the orbits have been contracting for the last 95 million years.

The age of the Earth is about one third to one fourth of the cosmic age. A
time variation of the gravitational constant should be manifested on geological
time scales, otherwise it is not attractive to consider this. A variation of k in the
past on the scale of the present-day logarithmic derivative would allow to linearize
(2.22), and is therefore too small to effect a change in the paleoclimate (Newman
and Rood, 1977). The expansion factor (3.3) gives a k̇/k with a zero close to
the present epoch. This is the reason why the value of k̇0/k0 stated after (3.3) is
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Table VII. Solar luminosity for constant k (gravitational constant independent of cosmic time),
at different look-back times τ0 − τ1, cf. after (3.3), and normalized with the present-day value
L0. (Tables II–VI all refer to a look-back time of 3.8 Gyr.) �1 is the rescaled look-back interval,
H0 · (τ1 − τ0). Flux and luminosity ratios coincide, S1/S0 = L1/L0, as the planetary orbital radii
stay constant. T1/T0 is the ratio of the look-back/present-day equilibrium temperatures, applicable to
any planet, as in Tables III, V and VI. T S

1 is the look-back surface temperature of Earth, as compared
to its present-day mean value, T S

0 ≈ 15◦C. The entries are calculated as explained after (3.5), for
the solar parameters σa,b stated after (2.21) and in Table III. The first two look-back times are listed

for comparison with Table X

τ0 − τ1 (Gyr) −�1 L1/L0(σa) T1/T0(σa) T S
1 (σa) (◦C) L1/L0(σb) T1/T0(σb) T S

1 (σb) (◦C)

2.06 0.143 0.90035 0.9741 8.4 0.85145 0.9606 4.9
2.75 0.191 0.87121 0.9661 6.4 0.81102 0.9490 2.0
3.8 0.264 0.83033 0.9546 3.4 0.75638 0.9326 −2.2
4.5 0.313 0.80517 0.9473 1.6 0.72366 0.9223 −4.8

sufficiently small to be consistent with the tight bounds mentioned before (2.18).
Yet k̇/k quickly exceeds the present k̇0/k0 in geological look-back time, so that
the nonlinear terms in (2.22) and (2.24) have to be included in the luminosity ratio
(3.1). For instance, at a look-back time of 3.8 Gyr, we find k̇1/k1 ≈ −0.013 Gyr−1.
Beyond the cross-over regime, in the early stage of the cosmic expansion, the
logarithmic derivative even diverges, k̇/k(τ → 0) ∼ −1/τ , cf. (2.5), (2.7) and
(3.4); the high-z asymptotics of galaxy diameters hinges upon that.

In Tables VII, IX and X, we consider four look-back times, ranging from 2.06
to 4.5 Gyr. It is instructive to compare the luminosity and temperature ratios listed
in Table X with those for constant k in Table VII. The latter implies k1 = k0 and
K1 = �1 in the luminosity ratio (3.1), so that S1/S0 = L1/L0 ≈ 1/(1 − σ�1),
completely detached from the cosmic expansion, as H0 drops out in σ�1. In
this case, since �1 is negative for look-back times, S1/S0 steadily decreases
backwards in time, that is, with increasing look-back time τ0 − τ1. This need not
be so if k varies. S1/S0 initially decreases in look-back time if ε is sufficiently
small or negative, cf. after (2.18), which can readily be seen from (3.1) with the
expansions (2.22) and (2.24) substituted. However, S1/S0 can reach a minimum
within the relevant look-back interval of 4.7 Gyr, and subsequently increase in this
interval. The condition for this to happen is a zero of d(S1/S0)/dτ1 in the range
−0.327 < �1 < 0, more explicitly,

1

H0

k̇1

k0
(1 − σK1) + σ

λ + 2
(k1/k0)λ+1 = 0. (3.6)

Here, k1/k0 is defined in (3.2), and k̇1/k0 = Ḣ (τ1)/H0, cf. (2.5) and (3.4). We use
the rescaled look-back interval, �1 = H0 · (τ1 − τ0), as variable in (3.6) instead
of τ1. As the zero of (3.6) sought for is small, we can use the ascending series
expansions of k1/k0 and K1 in (2.22) and (2.24), respectively. The series of k̇1/k0
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is most easily obtained by differentiating (2.22). In this way, we expand (3.6) as,

1 + A1�1 + A2�
2
1 + A3�

3
1 + · · · = 0, (3.7)

A1 := 2(λ + 2)c(1)
2 + σε

σ − (λ + 2)ε
,

A2 := −1

σ − (λ + 2)ε

[
(λ + 3)σc

(1)
2 + 3(λ + 2)c(1)

3

(H0τ0)3
+ 1

2
λσε2

]
,

A3 := 1

σ − (λ + 2)ε

[
(2λ + 5)σc

(1)
3

(H0τ0)3
+ 4(λ + 2)c(1)

4

(H0τ0)4

+ 4

3
λ(λ + 2)σc

(1)
2 ε − 1

2
λ(λ + 1)σδε + O(ε2)

]
. (3.8)

The coefficients c
(1)
i are the ci in (2.23) taken at λ = 1, otherwise we put λ ≈ 7.5,

which is the scaling exponent of the luminosity, cf. (2.1). The solar parameter σ

is defined in (2.21).
For the remainder of this section, we consider the expansion factor (3.3),

discussed in Tables VIII–X. In (3.8), we insert λ ≈ 7.5 as well as H0τ0, ε, δ and
the c

(1)
i listed in Table VIII. The solar parameter σ is exemplified in Tables IX and

X by two values σa,b. Substituting σa ≈ 0.774 for σ in (3.8), we find A1 ≈ 4.936,
A2 ≈ −11.86 and A3 ≈ 17.28. Solving (3.7), we obtain the look-back interval
�1(σa) ≈ −0.143, so that the solar flux (3.1) attains its minimum at a look-back
time of 2.06 Gyr. The convergence of (3.7) is quite good; dropping the third order
term, we find a zero at −0.149. In the first row of Table X, we list the flux,
luminosity and temperature ratios at 2.06 Gyr.

The second choice of solar parameter, σb ≈ 1.22, gives A1 ≈ 3.169, A2 ≈
−8.395 and A3 ≈ 13.05, so that the zero of (3.7) is �1(σb) ≈ −0.191, again the
only one in the relevant range indicated before (3.6). The flux minimum then
occurs at a look-back time of 2.75 Gyr, dealt with in the second row of Table X.

Table VIII. Parameters relating to the expansion factor a(τ ) ∝ τ−1/2 sinh((3/2)τ/τ0), cf. (3.3).
η = 3/2, α = 1, and β = −1/2 are input, cf. (2.6). q0 = −1 + ε and p0 = 1 + δ define the second
and third order of the ascending series of a(τ ), cf. (2.3). H0τ0, ε, and δ are derived via (2.8)–(2.10).
The inferred present epoch is τ0 ≈ 16.5 Gyr, cf. after (2.5). The coefficients c

(λ=7.5)
i determine the

second to fourth order of the ascending series of K1/�1 in look-back time, cf. (2.24) and Table IX.
The c

(λ=1)
i are required in (3.8) for the solar flux minimum. These coefficients are calculated via

(2.23), with the parameters in this table

H0τ0 ε δ c
(λ=1)
2 c

(λ=1)
3 c

(λ=1)
4 c

(λ=7.5)
2 c

(λ=7.5)
3 c

(λ=7.5)
4

1.15719 −2.7862 × 10−3 0.42449 0.20806 0.42403 0.45364 0.20809 0.41808 0.71616
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Table IX. Input parameters from Table VIII, τ0 − τ1 is the look-back time. The first two look-back
times are listed since the solar flux attains its minimum there, cf. Table X, subject to a time variation
of the gravitational constant defined by the expansion factor in Table VIII, cf. (2.5) and (2.7). The
solar flux minimum depends on the choice of the solar parameter σ in (3.1); it occurs at 2.06 Gyr
if σ ≈ 0.774 and at 2.75 Gyr for σ ≈ 1.22, cf. after (2.21). The rescaled, dimensionless look-back
interval H0 · (τ0 − τ1) is denoted by −�1, as in Table VII. k1/k0 is the look-back/present-day ratio
of the gravitational constant, and K1 determines the luminosity ratio, cf. (3.1) and Table X. k1/k0

is calculated via (3.2), and K1/�1 via (2.24) with λ = 7.5, cf. (2.1), and the c
(λ=7.5)
i in Table VIII

τ0 − τ1 (Gyr) −�1 k1/k0 K1/�1

2.06 0.143 1.00478 1.01087
2.75 0.191 1.00937 1.02130
3.8 0.264 1.02038 1.04572
4.5 0.313 1.03120 1.06896

4. PLANETARY PALEOCLIMATES

Earth’s present mean surface temperature T S
0 relates to its black-body equilib-

rium temperature as T S
0 ≈ T0 + 33 K, where T0 ≈ 255 K and T S

0 ≈ 15◦C (Sagan
and Chyba, 1997; Kasting and Catling, 2003). We assume this shift of 33 K,
due to the H2O − CO2 greenhouse effect, to hold in look-back time as well,
T S

1 ≈ T1 + 33 K. The look-back surface temperature can thus be recovered from
the black-body ratio as T S

1 (◦C) ≈ 255 · T1/T0 − 240. This temperature as well as
the black-body ratios T1/T0 (always in K) are listed in Tables III, V–VII and X for
various look-back times. The black-body temperature ratios are calculated via the
flux and luminosity ratios (3.1), with (3.2) and (2.24) substituted.

The following temperature estimates, based on the expansion factor (3.3),
are given for two values of the solar parameter σ in the luminosity ratio (3.1),
σa ≈ 0.774 and σb ≈ 1.22, cf. after (2.21); a σ moderately outside this range
would also qualify. At look-back times of 3.8 and 4.5 Gyr, we find the surface
temperatures T S

1 (3.8, σa) ≈ 15◦C and T S
1 (4.5, σa) ≈ 19◦C, cf. Table X, and σb

generates T S
1 (3.8,σb) ≈ 8.8◦C and T S

1 (4.5, σb) ≈ 12◦C. This is to be compared
to the estimates for constant k, cf. after (3.5) and Table VII, where we find
T S

1 (3.8,σa) ≈ 3.4◦C and T S
1 (4.5, σa) ≈ 1.6◦C, whereas σb gives temperatures be-

low the freezing point, T S
1 (3.8,σb) ≈ −2.2◦C and T S

1 (4.5,σb) ≈ −4.8◦C.
Negative surface temperatures in the Archean and Hadean are rather unlikely.

There is evidence for liquid water as early as 4.4 Gyr ago, inferred from oxygen
isotope ratios in zircon grains, indicative of supracrustal material exposed to liquid
water (Wilde et al., 2001; Mojzsis et al., 2001). There is likewise evidence for
liquid water from sedimentary rocks deposited in the Early Archean, 3.6 − 3.9 Gyr
ago (Nutman et al., 1984, 1996). The early Archean Earth was presumably warmer
than today, with average surface temperatures exceeding 15◦C, as there are no
traces of glaciation prior to 2.7 Gyr, most notably the absence of polar caps
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(Kasting, 1989). Further circumstantial evidence for a warm Archean Earth is the
34S depletion in sediments dated back to 2.6 − 3.5 Gyr, possibly caused by sulfur-
reducing bacteria in 30 − 50◦C oceans (Ohmoto and Felder, 1987; Habicht et al.,
2002; Ono et al., 2003). Similarly, 13C-depleted carbon in 3.7 Gyr sedimentary
rocks may be due to planktonic organisms (Mojzsis et al., 1996; Rosing, 1999).
Isotopic evidence for freshwater microorganisms 2.6 − 2.7 Gyr ago is given in
Watanabe et al. (2000). To explain the high surface temperatures throughout
the Archean despite a dim Sun, an increased atmospheric CO2 concentration
supplemented by other greenhouse gases such as CH4 and, in the Late Archean
and Early Proterozoic, O2 was invoked (Sagan and Chyba, 1997; Kasting and
Catling, 2003; Tajika, 2003). Life may already have been present for most part of
the Hadean, periodically extinguished whenever the oceans evaporated by asteroid
impacts (Sleep et al., 1989; Wilde et al., 2001). If so, one can reckon that life is a
common occurrence with a substantial effect on cosmic evolution (Dyson, 1979),
which is one more reason to refrain from deterministic evolution equations in
cosmology.

There is evidence for fluid water on Mars some 3.8 Gyr ago, at the end of the
heavy-bombardment era, such as degrading impact craters and channel networks,
valleys and canyons caved out by fluvial erosion (Carr, 1996). The possibility to
reach surface temperatures above the melting point by CO2 greenhouse warming
was studied in Kasting (1991), where estimates for the required solar flux, depend-
ing on the CO2 pressure, were derived. The weakest bound, attained at 5 bar, is
S1/S0 > 0.86, where S1 is the flux in look-back time, 3.8 Gyr, normalized with the
present flux S0 at the Martian orbit as in (3.1). Table VII indicates that this cannot
be achieved with constant k. Deviations from a 5 bar surface pressure can even
drive the required flux ratio beyond 0.9. The flux ratios in Table X, based on the
expansion factor (3.3), still qualify, S1/S0(σa) ≈ 1.0, and S1/S0(σb) ≈ 0.91. The
solar flux, subject to a varying k, even increases in the heavy-bombardment period,
reaching S1/S0(σa) ≈ 1.06 and S1/S0(σb) ≈ 0.95 at 4.5 Gyr. CO2 ice clouds can
increase the greenhouse effect by backscattering of thermal IR radiation (Forget
and Pierrehumbert, 1997; Mischna et al., 2000). In this way, temperatures above
the freezing point can be reached, despite the higher albedo these clouds would
generate. A greenhouse warming of early Mars is further complicated by a CO2

recycling problem due to the absence of volcanism, though other greenhouse gases
like methane could compensate for that.

The expansion factor (3.3) is an attractive choice for the reasons summarized
below, but not the only possible one. In Tables II–VI, we study the parameter
space (η, α, β) defining the expansion factors (2.6). We restrict these parameters
by requiring surface temperatures and flux ratios capable of solving the faint young
Sun paradox without modifications of the present H2O − CO2 greenhouse effect,
the 33 K shift, that is. Further bounds can be obtained from the redshift scaling
of galaxy diameters discussed below. Moreover, there is no necessity to restrict to
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the analytic shape (2.6) of the expansion factor, we could have proceeded with the
ascending series (2.3) and (2.11). We chose the expansion factors (2.6) to have an
analytically tractable cross-over between power-law and exponential expansion,
where the parameters (η, α, β) prescribe the asymptotics of the early and final
stage, cf. after (2.6).

In Tables III, V and VI, we study the impact of the cosmic age on the solar
luminosity evolution. We consider a look-back time of 3.8 Gyr, the borderline
of Archean and Hadean era, and we take ε = 0 as input, so that the present-day
logarithmic derivative k̇0/k0 vanishes, cf. (2.18). The current bounds on k̇0/k0

are such that this derivative cannot affect the solar luminosity evolution in a
noticeable way, cf. the discussions following (2.18) and (3.5). In Table III, η is
arbitrarily prescribed, ranging between 0.5 and 3.5. α and β are calculated from
(2.13) and (2.14), with input parameters ε = 0 and H0τ0 = 1.1, the latter means
a present epoch of τ0 ≈ 15.8 Gyr, cf. after (2.5). δ is calculated from (2.12). If
we take σa ≈ 0.774 as solar parameter in the luminosity ratio (3.1), the surface
temperatures range from 24◦C for η = 0.5 to 5.7◦C for η = 3.5, as inferred from
the black-body temperature ratios explained at the beginning of this section. The
respective fluxes at the planetary orbits are 15% higher (14% lower for η = 3.5)
than the present-day flux. (The quoted surface temperatures refer to Earth, whereas
the flux and temperature ratios apply to any planet.) Using σb ≈ 1.22 instead, we
find surface temperatures between 17 ◦C and 0◦C, and fluxes 4% higher (22%
lower) than presently. Fluxes some 20% lower than the present one are not an
attractive option, as they cannot significantly raise the surface temperature above
the freezing point of water, so that an enhanced greenhouse effect and/or a lower
albedo would still be necessary for a warm paleoclimate. Thus we can restrict the
η-range to η ≤ 2.5 if we choose σb as solar parameter in (3.1).

Table V is likewise compiled at a look-back time of 3.8 Gyr, but for a lower
cosmic age, H0τ0 = 0.95 or τ0 ≈ 13.7 Gyr, otherwise the input parameters of
Table III are retained. If we reduce the cosmic age, the effect of the time variation
of k gets more pronounced, as the look-back time moves into the cross-over
regime of the expansion factor (2.6). At τ0 ≈ 13.7 Gyr, and for a look-back-time
of 3.8 Gyr, the third and fourth order terms of the expansion (2.24) already give
a noticeable contribution. The surface temperatures based on σa range between
32◦C (η = 0.5) and 6.9◦C (η = 3.5), they are generated by fluxes 30% higher
(12% lower for η = 3.5) than the present-day flux. If the luminosity ratio is
calculated with σb, we obtain surface temperatures between 26◦C and 1.1◦C, and
the respective solar fluxes are 18% higher (20% lower) than the present flux. A
20% reduction gives rather low surface temperatures, and fluxes exceeding the
present flux by more than 10% can lead to a run-away atmosphere (Kasting and
Catling, 2003). Thus, in case of σa, a safe η-range is 2 to 3.5, with temperatures in
the range 17◦C to 6.9◦C, and fluxes 4% higher (12% lower) than the present flux.
In case of σb, we obtain a similar temperature and flux range for η between 1.5 and
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2.5. If the cosmic age is further reduced, temperature and flux quickly increase, and
the admissible η-interval shrinks to maintain a stable greenhouse effect. However,
a cosmic age of τ0 ≈ 13.7 Gyr is already rather low, if one considers age estimates
from nuclear chronometers (which are unaffected by a time variation of k). The
averaged Th/Eu age of three M15 giants is estimated in Sneden et al. (2000) as
14 ± 3 Gyr, and the age of the halo star CS 31082–001 is quoted in Schatz et al.
(2002) as 15.5 ± 3.2 Gyr, inferred from U/Th ratios. Such age estimates have
constanly been revised downwards in recent years (Truran et al., 2002), to bring
them in line with the current cosmological standard model (Tegmark et al., 2004).

In Table VI, we consider H0τ0 = 1.3 (or τ0 ≈ 18.7 Gyr, four times the solar
age), but otherwise the same parameters as in Tables III and V. A high cosmic age
diminishes the contribution of the nonlinear terms in the expansions (2.22) and
(2.24), so that the variation of k has a lesser impact on the luminosity evolution
in geological look-back time, which shows in low surface temperatures. The
temperatures obtained with σa range between 17◦C (η = 0.5) and 4.8◦C (η = 3.5),
and the respective fluxes at the planetary orbits are 3% higher (15% lower) than
presently. As for σb, we find surface temperatures between 11◦C and −0.8◦C, and
solar fluxes 6% lower (23% lower) than the present flux. Thus, if we use σb as solar
parameter, we have to restrict the η-range to η < 2 to obtain surface temperatures
above 4◦C at 3.8 Gyr.

In Tables III, V and VI, we also list the scaling exponent of the angular diam-
eter of radio galaxies at high z, θ ∝ z−(n−1), cf. after (2.17). This exponent, n − 1,
increases with η and decreases with H0τ0 as long as it stays positive. A negative
n − 1 means constant angular diameters, θ ∝ 1, at high redshift, cf. the discussion
after (2.17). The latter is not really ad odds with observations, but increasingly
unlikely, cf. the n-values cited before (2.18), which tend toward n ≈ 2. It is
evident from these tables that an n close to 2 severely limits the possible η-range.

The expansion factor (3.3) is remarkable as it gives a very small ε ≈
−2.786 × 10−3, cf. (2.9) and (2.18), without any need for a finetuning of α,
β and η. To contrast this, I mention two other expansion factors, which come to
mind when looking at Tables III and VI. The first is defined by η = 2, α = 3/4
and β = −1/4 in (2.6), resulting in H0τ0 ≈ 1.306 and ε ≈ −0.013, cf. (2.8) and
(2.9). At a look-back time of 3.8 Gyr, surface temperatures between 4◦C and 10◦C
(depending on the solar parameter σ ) can be read off from Table VI. The second
expansion factor is specified by η = 1, α = 2, β = −3/2, so that H0τ0 ≈ 1.126
and ε ≈ −0.041, with surface temperatures in the range 14–21◦C, cf. Table III. In
the first case, ε comes close to the helioseismological bound, cf. after (2.18). In
the second example, this bound is even exceeded, though a slight variation of η

can still make ε arbitrarily small.
The expansion factor (3.3) is capable of producing a surface temperature

3.8 Gyr ago which is way above the freezing point. Our estimates range between
9◦C and 15◦C, cf. Table X, depending on the choice of the solar parameter
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σ , and the temperature even moderately increases during the Hadean, reaching
12–19◦C at 4.5 Gyr. The corresponding temperature range for constant k is −2 to
3◦C at 3.8 Gyr, and −5 to 2◦C at 4.5 Gyr, cf. Table VII, subject to an invariable
33 K greenhouse effect. In case of a varying k, the lowest surface temperatures,
7–12◦C, are attained in the Early Proterozoic and Late Archean, 2–2.8 Gyr ago, cf.
Table X. This compares to 2–8◦C for constant k in the same epoch, cf. Table VII.
The surface temperatures generated by the expansion factor (3.3) are quite in line
with the mentioned evidence for a warm paleoclimate, in particular with the exis-
tence of warm oceans in the Archean and Hadean, and with the existence of fluid
water on Mars before 3.8 Gyr ago. Finally, the age estimates of the halo giants
cited above can convincingly be accommodated in a 16.5 Gyr universe.

5. CONCLUSION

The luminosity of the early Sun can be increased by a cosmic time variation
of the gravitational constant. The basic concepts to argue this are Schwarzschild’s
scaling relation (2.1) and the constancy of the moderate dimensionless ratio (2.4)
in the cosmic evolution. The quantitative modeling of the luminosity evolution
subject to a varying gravitational constant depends on very few input parameters.
We do not need to invoke climatic changes, which hinge upon many details such
as the actual greenhouse gases involved or the composition of the albedos. In case
of Mars, for instance, it is uncertain if there was a significant albedo of CO2 ice
clouds over a significant period before 3.8 Gyr, because of the lack of volcanic
CO2 recycling (Kasting and Catling, 2003). Even if this is taken for granted, it
may have resulted in a warming or cooling of the Martian surface, depending on
the actual size of the ice particles, which determines whether the backscattering
of the outgoing infrared outweighs the reflection of the incident solar wavelengths
(Forget and Pierrehumbert, 1997).

The time variation of k can severely impact planetary paleoclimates, even
though the present variation is very small as suggested by lunar laser ranging and
helioseismological bounds. To put this beyond doubt, we assumed the logarithmic
time derivative of k to be negligible at the present epoch. The crucial point is
to take the higher order derivatives into account on geological time scales. The
solar age is about one third to one fourth of the cosmic age, and on that scale
higher orders in the ascending series of k do matter in the stellar luminosity
evolution, since the cross-over regime of the cosmic expansion factor is reached.
Quantitative estimates with regard to the effect of the cosmic age on the solar flux
and in particular on Earth’s surface temperature have been given in the tables and
in Section 4. Typical mean surface temperatures in the Archean and Hadean range
within 7–20◦C.

Finally, a time variation of k also bears on the redshift scaling of galaxy
diameters. We can relate the scaling exponent of radio galaxies in the high-z
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regime to the power-law asymptotics of the cosmic expansion factor. Based on
this scaling index, we study the solar flux and Earth’s paleoclimate at critical
look-back times in Tables VIII–X. We find a qualitative change in the solar flux
evolution, effected by the time variation of k. If k is kept constant, the solar flux
decreases in look-back time. In case of a varying gravitational constant, however,
the solar flux reaches a minimum and then increases during most part of the
Archean and throughout the Hadean period, which results in surface temperatures
prior to 3.8 Gyr ago that are quite comparable to the present 15◦C, cf. Table X.
This gives further credence to the existence of oceans in the Hadean, and suggests
that the solar flux at the Martian orbit was capable of sustaining a CO2 greenhouse
effect strong enough for the large-scale presence of liquid water.
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